复数z满足|z-1|=|z-i|,则此复数z所对应的点的轨迹方程是_.
问题描述:
复数z满足|z-1|=|z-i|,则此复数z所对应的点的轨迹方程是______.
答
令z=x+yi(x,y∈R).
∵复数z满足|z-1|=|z-i|,
∴|x-1+yi|=|x+(y-1)i|
∴
=
(x−1)2+y2
,
x2+(y−1)2
化为x-y=0.
故答案为:x-y=0.