求极限值 lim(3^n+2^2n)/(3^(n+1)+2^(2n+1))=
问题描述:
求极限值 lim(3^n+2^2n)/(3^(n+1)+2^(2n+1))=
答
lim(3^n+2^2n)/(3^(n+1)+2^(2n+1))
= lim(n-->∞)[(3^n+4^n)/(3*3^n+2*4^n)]
= lim(n-->∞)[(3/4)^n+1]/[3*(3/4)^n+2*] (分子分母同时除以4^n)
=(0+1)/(0+2)
=1/2