如图在四边形abcd中∠BAD=∠ABC=∠ADC=90°AB=AD,∠EAF=45°求证EF=BE+DF
问题描述:
如图在四边形abcd中∠BAD=∠ABC=∠ADC=90°AB=AD,∠EAF=45°求证EF=BE+DF
答
证明:延长CB到G,使BG=DF,连接AG∵∠ABC=90°∴∠ABG=90°=∠ADF又∵BG=DF,AB=AD∴△ABG≌△ADF(SAS)∴AG=AF,∠BAG=∠DAF∵∠BAD=90°,∠EAF=45°∴∠BAE+∠DAF=45°则∠EAG=∠BAE+∠BAG=45°∴∠EAG=∠EAF又∵AG=...