如图,BO、CO分别平分∠ABC和∠ACB, (1)若∠A=60度,求∠O; (2)若∠A=100°,120°,∠O又是多少? (3)由(1)、(2)你发现了什么规律?当∠A的度数发生变化后,你的结论仍成立吗?(
问题描述:
如图,BO、CO分别平分∠ABC和∠ACB,
(1)若∠A=60度,求∠O;
(2)若∠A=100°,120°,∠O又是多少?
(3)由(1)、(2)你发现了什么规律?当∠A的度数发生变化后,你的结论仍成立吗?(提示:三角形的内角和等于180°)
答
∵BO、CO分别平分∠ABC和∠ACB,
∴∠1=∠2,∠3=∠4.
(1)∵∠A=60°,
∴∠1+∠2+∠3+∠4=120°,
∴∠1+∠4=60°,
∴∠O=180°-60°=120°.
(2)若∠A=100°,
∴∠1+∠2+∠3+∠4=80°,
∴∠1+∠4=40°,
∴∠O=140°.
若∠A=120°,
∴∠1+∠2+∠3+∠4=60°,
∴∠1+∠4=30°,
∴∠O=150°.
(3)规律是∠O=90°+0.5∠A,当∠A的度数发生变化后,结论仍成立.