用规律计算:1/1+√2+1/√2+√3+1/√3√4+、、、+1/√2008+√2009+1/√2009√2010+1/√2010+√2011

问题描述:

用规律计算:1/1+√2+1/√2+√3+1/√3√4+、、、+1/√2008+√2009+1/√2009√2010+1/√2010+√2011
根据(√2-1)*(√2+1)=1
(√3-√2)*(√3+√2)=1
(√2005-√2004)*(√2005+√2004)=1

由规律可知:1/(1+√2) +1/(√2+√3)+1/(√3+√4)+...+1/(√2009+√2010)+1/(√2010+√2011)=(√2 -1)/[(1+√2)(√2 -1)] +(√3-√2)/[(√2+√3)(√3-√2)]+(√4-√3)/[(√3+√4)(√4-√3)]+...+(√2010-√2...