1,已知a^2+c^2=2 b^2,求证1/a+b + 1/b+c = 2/a+c.提示:分析法,将结论去分母展开 2,设y + z/ay+bz = z + x/az+bx = x+y/ax+by,求证a=b或x=y=z.提示:设参法,y+

问题描述:

1,已知a^2+c^2=2 b^2,求证1/a+b + 1/b+c = 2/a+c.提示:分析法,将结论去分母展开 2,设y + z/ay+bz = z + x/az+bx = x+y/ax+by,求证a=b或x=y=z.提示:设参法,y+z/ay+bz=1/k

1:1/a+b + 1/b+c ;2/a+c.两式同乘以(a+b)(a+c)(b+c) 得1/a+b + 1/b+c =(a+c)(b+c)+(a+b)(a+c)=a^2+c^2+2ab+2ac+2bc 2/a+c.=2(a+b)(b+c)=2ab+2ac+2bc+2 b^2 因为a^2+c^2=2 b^2 所以1/a+b + 1/b+c = 2/a+c 2:y ...