设广义积分∫(e→+无穷)f(x)dx收敛,且满足方程f(x)=2/(除以)x^2-1/(除以)x乘以lnx的平方 ∫(e→+无

问题描述:

设广义积分∫(e→+无穷)f(x)dx收敛,且满足方程f(x)=2/(除以)x^2-1/(除以)x乘以lnx的平方 ∫(e→+无

Unexpectedly only me can help you?Don't mind I say English.Let N = ∫(e→+∞) f(x) dx,since this integral is convergent,it's a constantf(x) = 2/x² - 1/(xln²x) · ∫(e→+∞)f(x) = 2/x² -...