已知sina+cosa=3√5/5,α属于(0,π/4),sin(β-π/4)=3/5,β属于(π/4,π/2)(1)求sin2a和tan2a的值

问题描述:

已知sina+cosa=3√5/5,α属于(0,π/4),sin(β-π/4)=3/5,β属于(π/4,π/2)(1)求sin2a和tan2a的值

1.两边平方:(sina + cosa)^2 =(sina)^2 + 2sina*cosa + (cosa)^2 = 1 + sin2a =9/5
∴sin2a=4/5
∵a∈(0,π/4)
∴2a∈(0,π/2)
∴cos2a=√[1 - (sin2a)^2] = 3/5
tan2a=4/3