若tana=2则sin(2a+π/3)的值为4-3根号3/10 用二倍角解题,
问题描述:
若tana=2则sin(2a+π/3)的值为
4-3根号3/10 用二倍角解题,
答
sin(2a+π/3)
=sin2acosπ/3+cos2asinπ/3
=1/2×2sinacosa+√3/2(2cos²a-1)
=sinacosa+√3cos²a-√3/2
=sinacosa/(sin²a+cos²a)+√3cos²a/(sin²a+cos²a)-√3/2 (分子分母同除cos²a)
=tana/(tan²a+1)+√3/(tan²a+1)-√3/2
=2/(2²+1)+√3/(2²+1)-√3/2
=2/5+√3/5-√3/2
=4/10+2√3/10-5√3/10
=(4-3√3)/10
答
sin(2a+π/3)=sin2acosπ/3+cos2asinπ/3=sinacosa+√3/2*(cos²a-sin²a)=[sinacosa+√3/2*(cos²a-sin²a)]/(cos²a+sin²a) (分子分母同除以cos²a)=[tana+√3/2*(1-tan²a)]/(...