一个数学题:已知在三角形ABC中,a+c=2b,则cosA+cosC-cosAcosC+1/3sinAsinC=?
一个数学题:已知在三角形ABC中,a+c=2b,则cosA+cosC-cosAcosC+1/3sinAsinC=?
∵a+c=2b
∴sinA+sinc=2sinB
即sinA+sinC=2sin(A+C)
由和差化积、二倍角公式得:
2sin[(A+C)/2]×cos[(A-C)/2]=4sin[(A+C)/2]×cos[(A+C)/2]
∵sin[(A+C)/2]≠0
∴cos[(A-C)/2]=2cos[(A+C)/2]
cos(A/2)cos(C/2)+sin(A/2)sin(C/2)=2cos(A/2)cos(C/2)-2sin(A/2)sin(C/2)
即3sin(A/2)sin(C/2)=cos(A/2)cos(C/2)
∴tan(A/2)×tan(C/2)=1/3
因为tanA/2tanC/2=1/3
所以cosA+cosC-cosAcosC+(1/3)sinAsinC
=cosA+cosC-cosAcosC+(tanA/2tanC/2)sinAsinC
=cosA+cosC-cosAcosC+(1-cosA)/sinA*(1-cosC)/sinC*sinAsinC
=cosA+cosC-cosAcosC+(1-cosA)(1-cosC)
=cosA+cosC-cosAcosC+(1-cosA-cosC+cosAcosC)
=1
∵a+c=2b
∴sinA+sinc=2sinB
即sinA+sinC=2sin(A+C)
由和差化积、二倍角公式得:
2sin[(A+C)/2]×cos[(A-C)/2]=4sin[(A+C)/2]×cos[(A+C)/2]
∵sin[(A+C)/2]≠0
∴cos[(A-C)/2]=2cos[(A+C)/2]
cos(A/2)cos(C/2)+sin(A/2)sin(C/2)=2cos(A/2)cos(C/2)-2sin(A/2)sin(C/2)
即3sin(A/2)sin(C/2)=cos(A/2)cos(C/2)
∴tan(A/2)×tan(C/2)=1/3
∴[(1-cosA)/sinA]×[(1-cosC)/sinC]=1/3
∴cosA+cosC-cosAcosC+(1/3)sinAsinC=1