已知sin2θ=a,cos2θ=b,0

问题描述:

已知sin2θ=a,cos2θ=b,0

sin(π/2+α)=cosα
cos(π/2+α)=-sinα
sin(2θ+π/2)=b=2sin(θ+π/4)cos(θ+π/4)
cos(π/2+2θ)=-a=2cos^2(θ+π/4)-1
1+a=2cos^2(θ+π/4)
所以tan(θ+π/4)=b/(a+1)
A

可以用特殊值法,取θ=15度,sin2θ=a=1/2,cos2θ=b=二分之根号三,tan(θ+π/4)=三分之根号三,
而A.b/(1+a)=三之根号三
B.a/(1-b)
C.(1-b)/a
D.(1+a)/b=根号三
所以选A

tan(θ+π/4)=sin(2θ+π/2)/[1+cos(2θ+π/2)]=cos(2θ)/[1-sin(2θ)]=b/[1-a]ortan(θ+π/4)=[1-cos(2θ+π/2)]/sin(2θ+π/2)=[1+sin(2θ)]/cos(2θ)=[1+a]/b所以选D楼上两位解答都有问题:(1)jay_wei - 大魔法师 ...