f(x)=2sinxcosx+cos^2x-sin^2x1)求最小正周期2)f(x)最大值以及相应的x值
问题描述:
f(x)=2sinxcosx+cos^2x-sin^2x
1)求最小正周期
2)f(x)最大值以及相应的x值
答
化简过程:
sin2x+cos2x
=√2(√2/2*sin2x+√2/2*cos2x)
=√2[sin(2x+45°)]
由于正弦函数周期=2∏/Ш
既f(x)最小正周期=2∏/2=∏
最大值为:(正弦函数最大值为1)√2,当x=22.5°时取得
最小值为:(正弦函数最小值为-1)-√2,当x=112.5°时取得
答
y=2sinxcosx+(cos^2x-sin^2x)
=sin2x+cos2x
=√2[√2sin2x/2+√2cos2x/2]
=√2sin(2x+π/4)
所以T=2π/2=π
-1所以值域[-√2,√2]
f(x)值最大为:√2
当2x+π/4=π/2时,f(x)值最大
即x=π/8