化简:(Ⅰ)sin(α−2π)cos(α+π)tan(α−99π)cos(π−α)sin(3π−α)sin(−α−π); (Ⅱ)sin(nπ+α)cos(nπ−α) (n∈Z).
问题描述:
化简:(Ⅰ)
; (Ⅱ)sin(α−2π)cos(α+π)tan(α−99π) cos(π−α)sin(3π−α)sin(−α−π)
(n∈Z). sin(nπ+α) cos(nπ−α)
答
(Ⅰ)原式=
sinα•(−cosα)•tanα −cosα•sinα•sinα
=
=tanα sinα
1 cosα
(Ⅱ)当n=2k,k∈Z时原式=
=sin(2kπ+α) cos(2kπ−α)
=tanαsinα cosα
当n=2k+1,k∈Z时原式=
=sin(2kπ+π+α) cos(2kπ+π−α)
=tanα−sinα −cosα
∴当n∈Z时原式=tanα