sinAcosA= 负169分之60 sinA+cosA=负13分之7 A为第二象限角 怎么得到sinA=13分之5 cosA=负13分之1
问题描述:
sinAcosA= 负169分之60 sinA+cosA=负13分之7 A为第二象限角 怎么得到sinA=13分之5 cosA=负13分之1
答
第二象限则sin>0,coscosA=-7/13-sinA
所以-7sinA/13-sin²A=-60/169
169sin²A+91sinA-60=0
(13sinA-5)(13sinA+12)=0
sinA>0
sinA=5/13
cosA=-7/13-5/13=-12/13