如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心.此时,点M是线段PQ的中点.在平面直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0)、(0,1)

问题描述:

如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心.此时,点M是线段PQ的中点.在平面直角坐标系中,△ABO的顶点A,B,O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…,中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称,…,对称中心分别是A,B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),则点P2012的坐标为(  )
A. (1,1)
B. (-1,3)
C. (1,-1)
D. (1,3)

∵点P1(1,1)关于点A的对称点是P2(1,-1),点P2关于点B的对称点是P3(-1,3),点P3关于点O的对称点P4(1,-3),点P4关于点A的对称点P5(1,3),点P5关于点B的对称点是P6(-1,-1),点P6关于点O的对称点是P7...