(1/2+1/3+1/4+1/5)×(1/3+1/4+1/5+1/6)-(1/2+1/3+1/4+1/5+1/6)×(1/3+1/4+1/5)

问题描述:

1
2
+
1
3
+
1
4
+
1
5
)×(
1
3
+
1
4
+
1
5
+
1
6
)-(
1
2
+
1
3
+
1
4
+
1
5
+
1
6
)×(
1
3
+
1
4
+
1
5

设x=

1
3
+
1
4
+
1
5
,那么:
原式=(
1
2
+x)×(x+
1
6
)-(
1
2
+
1
6
+x)×x,
=
1
2
x+
1
12
+x2+
1
6
x-
2
3
x-x2
=
2
3
x-
2
3
x+
1
12

=
1
12