已知向量OP1=(cosθ,sinθ),向量OP2=(1+sinθ,1-cosθ),θ∈R,向量P1P2长度最大值是?

问题描述:

已知向量OP1=(cosθ,sinθ),向量OP2=(1+sinθ,1-cosθ),θ∈R,向量P1P2长度最大值是?
A.根号2 B.2倍根号2 C.3倍根号2 D.4倍根号2

向量P1P2=向量OP2-向量OP1
=(1+sinθ,1-cosθ)-(cosθ,sinθ)
=(1+sinθ-cosθ,1-cosθ-sinθ)
|向量P1P2|
=√[(1+sinθ-cosθ)²+(1-cosθ-sinθ)²]
=√[(1+sinθ-cosθ)²+(1-cosθ-sinθ)²]
=√[2+2(sin²θ+cos²θ)-4cosθ]
=√(4-4cosθ)≤2√2
B.2倍根号2