求和:Sn=1*2+1*2^2+3*2^3+……+n*2^n.

问题描述:

求和:Sn=1*2+1*2^2+3*2^3+……+n*2^n.

Sn=1*2+2*2^2+3*2^3+……+n*2^n (1) 2Sn= 1*2^2+1*2^3+3*2^4+……+n*2^(n+1) (2) (1)-(2) -Sn=1*2+1*2^2+1*2^3+……+1*2^n-n*2^(n+1) =2(2^n-1)-n*2^(n+1) 所以Sn=(n-1)*2^(n+1)+2