已知函数f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)无最小值,无最大值
问题描述:
已知函数f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)无最小值,无最大值
求w
由题意的f(π/3)=1 这就话怎么由题意得?
答
【无最小值、无最大值应该有误】应为f(x)在区间(π/6,π/2)【有最大值,无最小值】∵f(π/6)=f(π/2)∴对称轴 x = (x1+x2) / 2 = [(π/6) + (π/2)] / 2 = π / 3又:f(x)在区间(π/6,π/2)无最小值,有最大值∴...