正交矩阵的相似若两个n阶正交阵相似,证明它们正交相似.即对正交阵A,B,存在n阶方阵T,使 (T逆)AT = B 则存在 n阶正交方阵D,使 (D逆)AD = B.好像是用相似关系的等价类来说明.我矩阵学得太烂,谁给说一下思路?有没有人看啊?
问题描述:
正交矩阵的相似
若两个n阶正交阵相似,证明它们正交相似.
即对正交阵A,B,存在n阶方阵T,使
(T逆)AT = B
则存在
n阶正交方阵D,使
(D逆)AD = B.
好像是用相似关系的等价类来说明.我矩阵学得太烂,谁给说一下思路?
有没有人看啊?
答
恩,我在看,我觉得是这样的:)正交矩阵因为A逆=A' (转置或转置共扼),所以A'A=AA'(=I),A是正规矩阵,它具有n个正交的特征向量.(完整的证明可以在一般的线性代数书里或所有的高等代数书里找到).把这些向量排列成一个...