取一副三角尺按图①的方式拼接,固定三角尺ADC,将三角尺ABC绕点A按顺时针方向旋转一个大小为α的角得到
问题描述:
取一副三角尺按图①的方式拼接,固定三角尺ADC,将三角尺ABC绕点A按顺时针方向旋转一个大小为α的角得到
△ABC’.试问当α为多少度时,能使AB∥DC?2当旋转到③的位置时此时α又为多少度?
答
取一副三角板按图1拼接,固定三角板ADC,将三角板ABC绕点A依顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图所示.
试问:(1)当α为多少度时,能使得图2中AB∥DC;
(2)连接BD,当0°<α≤45°时,探寻∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.考点:旋转的性质;平行线的判定;三角形内角和定理.专题:探究型.分析:(1)要使AB∥DC,只要证出∠CAC′=15°即可.
(2)当0°<α≤45°时,总有△EFC′存在.根据∠EFC′=∠BDC+∠DBC′,又因为∠EFC′+∠FEC′+∠C′=180°,得到∠BDC+∠DBC′+∠C+α+∠C′=180°,则∠DBC′+∠CAC′+∠BDC=105°.(1)由题意∠CAC′=α,
要使AB∥DC,须∠BAC=∠ACD,
∴∠BAC=30°,α=∠CAC′=∠BAC′-∠BAC=45°-30°=15°,
即α=15°时,能使得AB∥DC.
(2)连接BD,∠DBC′+∠CAC′+∠BDC的值的大小没有变化,总是105°,
当0°<α≤45°时,总有△EFC′存在.
∵∠EFC′=∠BDC+∠DBC′,∠CAC′=α,∠FEC′=∠C+α,
又∵∠EFC′+∠FEC′+∠C′=180°,
∴∠BDC+∠DBC′+∠C+α+∠C′=180°,
又∵∠C′=45°,∠C=30°,
∴∠DBC′+∠CAC′+∠BDC=105°.