求一阶导数y=arctan√(x^2-1)-(lnx / √(x^2-1))
问题描述:
求一阶导数y=arctan√(x^2-1)-(lnx / √(x^2-1))
答案是y'= xlnx / √(x^2-1)^3
答
y=arctan√(x^2-1)-(lnx / √(x^2-1))=1/(1+x^2-1)*[2x/2*√(x^2-1)]-[(1/x)*√(x^2-1)-lnx*(2x/2*√(x^2-1))]/(x^2-1)化简可以得到:y'= x^2lnx / x√(x^2-1)^3 .y'= xlnx / √(x^2-1)^3....