数学分析:construct a sequence (tn) of real numbers according to the following recursive rules:

问题描述:

数学分析:construct a sequence (tn) of real numbers according to the following recursive rules:
t0=0; t(n+1)=tn+(25-tn^2)/10
a) show that (tn) is convergent
b)compute the limit of tn as n goes to infinity
谢谢!

a)0{tn}是有界无穷数列,所以必定收敛
b)设limtn=x,则x=x+(25-x^2)/5,x=5(x=-5舍去)
即limtn=5能详细解释一下为什么0=0又t(n+1)=5-0.1(tn-5)^2