二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,3,…,n,…时,其图象在x轴上截得的弦长依次为d1,d2,…,dn,…,则d1+d2+…+dn为(  ) A.1n(n+1) B.nn(n+1) C.1n+1 D.nn+1

问题描述:

二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,3,…,n,…时,其图象在x轴上截得的弦长依次为d1,d2,…,dn,…,则d1+d2+…+dn为(  )
A.

1
n(n+1)

B.
n
n(n+1)

C.
1
n+1

D.
n
n+1

当a=n时,y=n(n+1)x2-(2n+1)x+1,
x1+x2

2n+1
n(n+1)
,x1x2=
1
n(n+1)

∵|x1-x2|=
(x1+x2)2−4x1x2
=
1
n(n+1)
=
1
n
1
n+1

∴d1+d2+…+dn=1−
1
2
+
1
2
1
3
+…+
1
n
1
n+1

=1-
1
n+1
=
n
n+1

故选D