二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,3,…,n,…时,其图象在x轴上截得的弦长依次为d1,d2,…,dn,…,则d1+d2+…+dn为( ) A.1n(n+1) B.nn(n+1) C.1n+1 D.nn+1
问题描述:
二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,3,…,n,…时,其图象在x轴上截得的弦长依次为d1,d2,…,dn,…,则d1+d2+…+dn为( )
A.
1 n(n+1)
B.
n n(n+1)
C.
1 n+1
D.
n n+1
答
当a=n时,y=n(n+1)x2-(2n+1)x+1,
∴x1+x2=
,x1x2=2n+1 n(n+1)
1 n(n+1)
∵|x1-x2|=
=
(x1+x2)2−4x1x2
=1 n(n+1)
−1 n
1 n+1
∴d1+d2+…+dn=1−
+1 2
−1 2
+…+1 3
−1 n
1 n+1
=1-
=1 n+1
n n+1
故选D