设A,B为n阶方阵,|A|=2,|B|=-3,则|A'B*-A*B'|=
问题描述:
设A,B为n阶方阵,|A|=2,|B|=-3,则|A'B*-A*B'|=
如题,A'为A的逆矩阵,B*为B的伴随矩阵
答
|A^-1B*-A*B^-1|
= |A^-1(B*B-AA*)B^-1|
= |A^-1| |(|B|E-|A|E)| |B^-1|
= -(1/6) |(|B|-|A|)E|
= -(1/6) |-5E|
= -(1/6)* (-5)^n