证明不等式:当x>0时,e^x >1+x+x^2/2

问题描述:

证明不等式:当x>0时,e^x >1+x+x^2/2
1. 证明不等式:当x>0时,e x >1+x+x 2 /2

证明:令f(x)=e^x-(1+x+x^2/2),则有f'(x)=e^x-(x+1)f''(x)=e^x-1易知f''(x)在R上单调递增函数.所以,当x>0时,f''(x)>f''(0)=0,则f'(x)在(0,+∞)上是单调递增的; 则有f'(x)>f'(0)=0,推出f(x)在(0,+∞)上也...