1.直角三角形两直角边分别为5厘米,12厘米.其中斜边上的高为( )2.已知四边形ABCD中,AD//BC.角A=90°AB=8 AD=BC=6.则以DC为边的正方形面积为( )AB=8 ,AD=BC=6(不连接在一快的)
问题描述:
1.直角三角形两直角边分别为5厘米,12厘米.其中斜边上的高为( )
2.已知四边形ABCD中,AD//BC.角A=90°AB=8 AD=BC=6.则以DC为边的正方形面积为( )
AB=8 ,AD=BC=6(不连接在一快的)
答
1 根据面积相等,5*12=斜边*高,斜边可根据勾股定理求出=13所以高=60/13
2 此四边形为长方形.DC=AB=8 面积=8*8=64
答
1、十三分之六十
2、64
答
1.√(5平方+12平方)=13
2.因为AD//BC.角A=90°,AD=BC=6,所以四边形ABCD是长方形,DC=AB=8,面积就是64
答
1.5*12/13=60/13
2.8*8=64
答
斜边=√5^2+12^2=13cm,面积=5*12/2=斜边*高/2,解得
高=60/13
由题可知四边形ABCD为矩形,所以DC=AB=8,所以S=8*8=64
答
1,60/13
2,64
答
1、5*12/13
2、8^2=64