复数z=x+yi(x,y∈R)满足|z-1|=x,则复数z对应的点Z(x,y)的轨迹方程为_.

问题描述:

复数z=x+yi(x,y∈R)满足|z-1|=x,则复数z对应的点Z(x,y)的轨迹方程为______.

∵z=x+yi(x,y∈R),|z-1|=x,

(x−1)2+y2
=x(x≥0),
两边平方得:y2=2x-1(x≥0),
∴复数z对应的点Z(x,y)的轨迹方程为:y2=2x-1(x≥0),
故答案为:y2=2x-1(x≥0).