已知|ab-2|+(b+1)²=0.,求1/ab+1/(a-1)(b-1)+1/(a-2)(b-2)+……+1/(a-2010)(b-2010)的值.
问题描述:
已知|ab-2|+(b+1)²=0.,求1/ab+1/(a-1)(b-1)+1/(a-2)(b-2)+……+1/(a-2010)(b-2010)的值.
过程+答案
答
因为绝对值和平方都大于等于0,而|ab-2|+(b+1)²=0.,
所以ab-2=0,b+1=0
解得a=-2 ,b=-1
1/ab+1/(a-1)(b-1)+1/(a-2)(b-2)+……+1/(a-2010)(b-2010)
=1/(-2)*(-1)+1/(-2-1)*(-1-1)+1/(-2-2)*(-1-2)……+1/(-2-2010)*(-1-2010)
=1/2+1/6+1/12+……+1/2012*2011
=1-1/2+1/2-1/3+1/3-1/4+……+1/2011-1/2012
=1-1/2012
=2011/2012