求证一列高数数列极限题:lim(3n^2+n)/(2n^2-1)=3/2
问题描述:
求证一列高数数列极限题:lim(3n^2+n)/(2n^2-1)=3/2
答
分子分母同时除以n^2,得到lim(3+1/n)/(2-1/(n^2)),因为n趋于无穷大,故1/n,1/(n^2)可看做0;即可得到极限3/2
答
是不是你少说了,n趋近于无穷呀
当n趋于无穷时,1/n和1/n^2 都趋近于0 (这是常识)
lim(3n^2+n)/(2n^2-1)=lim (3+(1/n)) /(2-(1/n^2)) (分式上下都除以n^2)
=3/2
证明完毕,有缘再见
答
用N-ε语言
对于任意ε>0
存在N=max(1,5/2ε)
当n>N时
|(3n^2+n)/(2n^2-1)-3/2|
=|(6n^2+2n-6n^2+3)/[2(2n^2-1)]|
=(2n+3)/[2(2n^2-1)]
因为n>N>=1,所以2n+32n^2-1>2n^2-n^2=n^2
(分子更大,分母更小的数更大)
=5/2n
=ε
由极限定义
lim n->∞ (3n^2+n)/(2n^2-1)=3/2