如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则|PA-PB|的最大值等于_.

问题描述:

如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则|PA-PB|的最大值等于______.

延长AB交MN于点P′,
∵P′A-P′B=AB,AB>|PA-PB|,
∴当点P运动到P′点时,|PA-PB|最大,
∵BD=5,CD=4,AC=8,
过点B作BE⊥AC,则BE=CD=4,AE=AC-BD=8-5=3,
∴AB=

AE2+BE2
=
32+42
=5.
∴|PA-PB|=5为最大.
故答案为:5.