在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则: ①四边形BFD′E一定是平行四边形; ②四边形BFD′E有可能是正方形; ③四边形BFD′E在底面ABCD内的投影一定

问题描述:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:

①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为______.(写出所有正确结论的编号)

①:∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,∴EB∥D′F,同理可证:D′E∥FB,故四边形BFD′E一定是平行四边形,即①正确;②:当E、F为棱中点时,四边形为菱形,但不可能为正...