已知F(X*Y)=F(X)+F(Y)定义域为(0,正无穷大)且是增函数,求证F(X/Y)=F(X)-F(Y)
问题描述:
已知F(X*Y)=F(X)+F(Y)定义域为(0,正无穷大)且是增函数,求证F(X/Y)=F(X)-F(Y)
答
由F(X*Y)=F(X)+F(Y),取Y=1得F(X*1)=F(X)+F(1),得F(1)=0
F(1)=F(X/X)=F(X)+F(1/X)=0即F(1/X)=-F(X)
因此F(X/Y)=F(X)+F(1/Y)=F(X)-F(Y)