数学应用题公式,不要太多不要太少,不超六年级水平

问题描述:

数学应用题公式,不要太多不要太少,不超六年级水平

总数量÷总份数=平均数.
  【一般行程问题公式】
  平均速度×时间=路程;
  路程÷时间=平均速度;
  路程÷平均速度=时间.
  【反向行程问题公式】
反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种.这两种题,都可用下面的公式
  (速度和)×相遇(离)时间=相遇(离)路程;
  相遇(离)路程÷(速度和)=相遇(离)时间;
  相遇(离)路程÷相遇(离)时间=速度和.
  【同向行程问题公式】
  追及(拉开)路程÷(速度差)=追及(拉开)时间;
  追及(拉开)路程÷追及(拉开)时间=速度差;
  (速度差)×追及(拉开)时间=追及(拉开)路程.
  【列车过桥问题公式】
  (桥长+列车长)÷速度=过桥时间;
  (桥长+列车长)÷过桥时间=速度;
  速度×过桥时间=桥、车长度之和.
  【行船问题公式】
  (1)一般公式:
  静水速度(船速)+水流速度(水速)=顺水速度;
  船速-水速=逆水速度;
  (顺水速度+逆水速度)÷2=船速;
  (顺水速度-逆水速度)÷2=水速.
  (2)两船相向航行的公式:
  甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
  (3)两船同向航行的公式:
  后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度.
  (求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目).
  【工程问题公式】
  (1)一般公式:
  工效×工时=工作总量;
  工作总量÷工时=工效;
  工作总量÷工效=工时.
  (2)用假设工作总量为“1”的方法解工程问题的公式:
  1÷工作时间=单位时间内完成工作总量的几分之几;
  1÷单位时间能完成的几分之几=工作时间.
  (注意:用假设法解工程题,可任意假定工作总量为2、3、4、5…….特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便.)
  【盈亏问题公式】
  (1)一次有余(盈),一次不够(亏),可用公式:
  (盈+亏)÷(两次每人分配数的差)=人数.
  例如,“小朋友分桃子,每人10个少9个,每人8个多7个.问:有多少个小朋友和多少个桃子?”
  解(7+9)÷(10-8)=16÷2
  =8(个)………………人数
  10×8-9=80-9=71(个)………………………桃子
  或8×8+7=64+7=71(个)(答略)
  (2)两次都有余(盈),可用公式:
  (大盈-小盈)÷(两次每人分配数的差)=人数.
  例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发.问:有士兵多少人?有子弹多少发?”
  解(680-200)÷(50-45)=480÷5
  =96(人)
  45×96+680=5000(发)
  或50×96+200=5000(发)(答略)
  (3)两次都不够(亏),可用公式:
  (大亏-小亏)÷(两次每人分配数的差)=人数.
  例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本.有多少学生和多少本本子?”