x^3+y^3+x^3y^3=17 x+y+xy=5
问题描述:
x^3+y^3+x^3y^3=17 x+y+xy=5
x^3+y^3+x^3y^3=17 x+y+xy=5
答
x^3+y^3+x^3y^3=17,x^3+y^3+x^3y^3+1=18,(x^3+1)(y^3+1)=18,
(x+1)(x^2-x+1)(y+1)(y^2-y+1)=18;
x+y+xy=5,x+y+xy+1=6,(x+1)(y+1)=6;
(x^2-x+1)(y^2-y+1)=3,[(x+1)^2-3x][(y+1)^2-3y]=3,
(x+1)^2(y+1)^2-3x(y+1)^2-3y(x+1)^2+9xy=3,
36-3x(y^2+2y+1)-3y(x^2+2x+1)+9xy=3,
36-3xy(x+y)-3(x+y)-3xy=36-3xy(5-xy)-3(5-xy)-3xy=3,
x^2y^2-5xy+6=0,xy=2或3;
故x+y=3且xy=2,或x+y=2且xy=3
解出
有四组根:
x=1 y=2
或者
x=2 y=1
或者
x=1-i 根号2,y=1+i 根号2
或者
x=1+i 根号2,y=1-i 根号2