有四个互不相等的整数a、b、c、d且abcd=9,那么a+b+c+d等于(  )A. 0B. 8C. 4D. 不能确定

问题描述:

有四个互不相等的整数a、b、c、d且abcd=9,那么a+b+c+d等于(  )
A. 0
B. 8
C. 4
D. 不能确定

由题意得:这四个数小于等于9,且互不相等.
再由乘积为9可得,四个数中必有3和-3,
∴四个数为:1,-1,3,-3,和为0.
故选A.
答案解析:根据题意可得出这四个数的值,继而可以确定这四个数的和.
考试点:有理数的乘法.


知识点:本题考查有理数的乘法运算,关键在于根据题意判断四个数的值,注意读清题意,题干已把这四个数限定在很小的范围.