设数列{an},{an2} (n∈N*)都是等差数列,若a1=2,则a22+a33+a44+a55等于(  ) A.60 B.62 C.63 D.66

问题描述:

设数列{an},{an2} (n∈N*)都是等差数列,若a1=2,则a22+a33+a44+a55等于(  )
A. 60
B. 62
C. 63
D. 66

∵数列{an},{an2} (n∈N*)都是等差数列,a1=2,设数列{an}的公差为d,
则有2a22 =a12+a32,即 2(2+d)2=22+(2+2d)2
解得d=0,
∴an=2,
∴an2=4,
∴a22+a33+a44+a55=4+8+16+32=60,
故选:A.