潘氏兄弟的《初等数论》中的一个定理很让我不以为然,

问题描述:

潘氏兄弟的《初等数论》中的一个定理很让我不以为然,
第五章第四节中定理4,m=2^a,a>=3,2不整除c,后面说,2不整除n时,二项同余方程
x^n=c(mod 2^a)必有解.定理5又说m=2^a,a>=3,2不整除n时,模2^a的一个缩系中的全部元素都是 模2^a的n次剩余.
以上所说是一致的,并且可以简单地说,在定理的条件下,当且仅当c为奇数即2不整除c时,c为模2^a的n次剩余.
然而定理7又说m=2^a,a>=3,2不整除n时,c为模2^a的n次剩余即二项同余方程
x^n=c(mod 2^a)有解的充要条件是(c-1)/2同余于0(mod(n,2)),
c对模2^a的指数整除2^(a-2)/(n,2^(a-2))
我的疑问是定理7怎么搞的那么复杂呢?

答:先整理一下问题.以下以”n奇”表示”n为奇数”.$5.4定理4:a>=3,c,n奇,则x^n=c mod 2^a必有解.定理5:a>=3,n奇,(c,2^a)=1,则 x^n=c mod 2^a必有解.(c,2^a)=1即表明c是2^a的缩系中的任意元素.而(c,2^a)=1等价于”c...