已知:如图,在矩形ABCD中,E为CB延长线上一点,CE=AC,F是AE的中点. (1)求证:BF⊥DF; (2)若AB=8,AD=6,求DF的长.
问题描述:
已知:如图,在矩形ABCD中,E为CB延长线上一点,CE=AC,F是AE的中点.
(1)求证:BF⊥DF;
(2)若AB=8,AD=6,求DF的长.
答
(1)证明:
连接BD交AC于O,连接FO,
∵四边形ABCD是矩形,
∴∠ABC=90°,AC=BD=2AO=2CO,AO=CO,
∵F为AE中点,
∴FO=
CE,1 2
∵AC=CE,
∴FO=
AC=1 2
BD,1 2
即FO=OB=OD,
∴∠DFB=90°,
即BF⊥DF;
(2) ∵∠ABC=90°,AB=8,BC=6,由勾股定理得:BD=AC=10=CE,
∴BE=10-6=4,
在Rt△ABE中,由勾股定理得:AE=
=4
82+42
,
5
∵F为AE中点,
∴BF=
AE=21 2
,
5
在Rt△DFB中,DF=
=
BD2-BF2
=4
102-(2
)2
5
.
5