函数w=1/z,把z平面上x^2+(y-1)^2=4映射成w平面上怎样的曲线?
问题描述:
函数w=1/z,把z平面上x^2+(y-1)^2=4映射成w平面上怎样的曲线?
答
z=1/w=1/(u+iv)=(u-iv)/(u^2+v^2)
z=x+iy
x=u/(u^2+v^2),
y=-v/(u^2+v^2),
(u/(u^2+v^2))^2+(-v/(u^2+v^2)-1)^2=4
所求曲线方程为:u^2+(u^2+v^2+v)^2=4(u^2+v^2)^2