线性代数证明题 若A和B为奇异的n阶方阵,则A+B也为奇异的.现在只学了奇异的定义,所以没有别的什么东西可以用.
问题描述:
线性代数证明题 若A和B为奇异的n阶方阵,则A+B也为奇异的.
现在只学了奇异的定义,所以没有别的什么东西可以用.
答
这个结论是不成立的.
如:
A=[ 1 0]
[ 0 0]
B=[ 0 0]
[ 0 1]
A+B=[ 1 0]
[ 0 1]
|A|=|B|=0
|A+B|=1