已知x+y=3,xy=1,a+b=5,ab=3,m=ax+by,n=bx+ay,求m^2n^2的值
问题描述:
已知x+y=3,xy=1,a+b=5,ab=3,m=ax+by,n=bx+ay,求m^2n^2的值
答
有点难呢!大概是这样。
因为x+y=3,xy=1,所以x^2+y^2=(x+y)^2-2xy=3^2-2*1=7.
因为a+b=5,ab=3,所以a^2+b^2=19
mn=(ax+by)(bx+ay)=abx^2+a^2xy+b^2xy+aby^2
=ab(x^2+y^2)+(a^2+b^2)xy
=3*7+19*1=40
所以m^2n^2=1600
答
因为x+y=3,xy=1,所以x^2+y^2=(x+y)^2-2xy=3^2-2*1=7.同样,因为a+b=5,ab=3,所以a^2+b^2=19于是mn=(ax+by)(bx+ay)=abx^2+a^2xy+b^2xy+aby^2=ab(x^2+y^2)+(a^2+b^2)xy=3*7+19*1=40所以m^2n^2=1600