已知一个简单多面体的每个顶点处有三条棱,则顶点数V与面数F满足的关系式是_.
问题描述:
已知一个简单多面体的每个顶点处有三条棱,则顶点数V与面数F满足的关系式是______.
答
四面体的顶点数为4、面数为4,棱数为6,则4+4-6=2;
长方体的顶点数为8、面数为6,棱数为12,则8+6-12=2;
正八面体的顶点数为6,面数为8,棱数为12,则8+6-12=2;
…
由此归纳推理,可猜想顶点数V与面数F和棱数的关系式为:
顶点数(V)+面数(F)-棱数(E)=2
又由每个顶点处有三条棱,即E=
V3 2
∴V+F-
V=23 2
即V=2F-4
故答案为:V=2F-4