设角α=−356π,则2sin(π+α)cos(π−α)−cos(π+α)1+sin2α+sin(π−α)−cos2(π+α)的值等于(  ) A.33 B.-33 C.3 D.-3

问题描述:

设角α=−

35
6
π,则
2sin(π+α)cos(π−α)−cos(π+α)
1+sin2α+sin(π−α)−cos2(π+α)
的值等于(  )
A.
3
3

B. -
3
3

C.
3

D. -
3

因为α=−

35
6
π,
2sin(π+α)cos(π−α)−cos(π+α)
1+sin2α+sin(π−α)−cos2(π+α)

=
2sinαcosα+cosα
1+sinα− cos2α
=
sin2α+cosα
1+sinα−cos2α

=
−sin
35
3
π+cos
35
6
π
1−sin
35
6
π−cos
35
3
π

=
−sin(12π−
1
3
π)+cos(6π−
1
6
π)
1−sin(6π−
1
6
π)−cos(12π−
1
3
π)

=
sin
π
3
+cos
π
6
1+sin
π
6
−cos
π
3
=
3

故选C