设角α=−356π,则2sin(π+α)cos(π−α)−cos(π+α)1+sin2α+sin(π−α)−cos2(π+α)的值等于( ) A.33 B.-33 C.3 D.-3
问题描述:
设角α=−
π,则35 6
的值等于( )2sin(π+α)cos(π−α)−cos(π+α) 1+sin2α+sin(π−α)−cos2(π+α)
A.
3
3
B. -
3
3
C.
3
D. -
3
答
因为α=−
π,35 6
则
2sin(π+α)cos(π−α)−cos(π+α) 1+sin2α+sin(π−α)−cos2(π+α)
=
=2sinαcosα+cosα 1+sinα− cos2α
sin2α+cosα 1+sinα−cos2α
=
−sin
π+cos35 3
π35 6 1−sin
π−cos35 6
π35 3
=
−sin(12π−
π)+cos(6π−1 3
π)1 6 1−sin(6π−
π)−cos(12π−1 6
π)1 3
=
=sin
+cosπ 3
π 6 1+sin
−cosπ 6
π 3
.
3
故选C