证明函数f(z)=x^2+2xy-y^2-i(x^2-2xy-y^2)在复平面内处处解析并求其导数
问题描述:
证明函数f(z)=x^2+2xy-y^2-i(x^2-2xy-y^2)在复平面内处处解析并求其导数
证明函数f(z)=x^2+2xy-y^2-i(x^2-2xy-y^2)在复平面内处处解析并求其导数,
答
方法一是用轲西黎曼方程.方法二是直接配成z=x+iy的函数f(z)=(x+yi)^2-2xyi+2xy-i[(x+yi)^2-2xyi-2xy]=(x+yi)^2-2xyi+2xy-i(x+yi)^2-2xy+2xyi=(x+yi)^2-i(x+yi)^2=(1-i)z^2因此它是复平面处处解析的函数f...