已知当x=5时,二次函数fx=ax^2+bx取得最小值,等差数列{An}的前n项和Sn=f(n),a2=-7 第二问?
问题描述:
已知当x=5时,二次函数fx=ax^2+bx取得最小值,等差数列{An}的前n项和Sn=f(n),a2=-7 第二问?
已知当x=5时,二次函数fx=ax^2+bx取得最小值,等差数列{An}的前n项和Sn=f(n),a2=-7
已知当x=5时,二次函数fx=ax^2+bx取得最小值,等差数列{An}的前n项和Sn=f(n),A2=-7 (1)求数列{An}的通项公式 (2)数列{Bn}的前n项和为Tn,且Bn=An/(2的n次方),求Tn
答
1、An=2n-11
2、Bn=An/(2的n次方)=(2n-11)/(2^n)=2n/(2^n) -11/(2^n)
分两项分别求和来算;第一项是差后等比数列(利用乘公比,做差),第二项是等比数列