如图,轮椅车的大小两车轮(在同一平面上)与地面的触点A、B间距离为80cm,两车轮的半径分别为136cm、16cm,则此两车轮的圆心相距______cm.
问题描述:
如图,轮椅车的大小两车轮(在同一平面上)与地面的触点A、B间距离为80cm,两车轮的半径分别为136cm、16cm,则此两车轮的圆心相距______cm.
答
如图,O1、O2表示两圆的圆心,AB为两圆公切线,连接O1A、O2B,作O1C⊥O2B,垂足为C;根据切线的性质可知,O1C=AB=80,O2C=O2B-BC=O2B-O1A=136-16=120,在Rt△O1O2C中,由勾股定理得,O1O2=O1C2+O2C2=1202+802=4013;...
答案解析:首先根据切线的性质,连接过切点的半径,构造了一个直角梯形,然后作梯形的另一高,构造了一个直角三角形.
考试点:圆与圆的位置关系;勾股定理;切线的性质.
知识点:此题综合运用了切线的性质定理以及勾股定理.