对于n阶复矩阵B,若B最小多项式和特征多项式相等,证明:存在向量a,使得a,Ba,……B^(n-1)a线性无关,呵呵
问题描述:
对于n阶复矩阵B,若B最小多项式和特征多项式相等,证明:存在向量a,使得a,Ba,……B^(n-1)a线性无关,呵呵
答
证明思路1:B最小多项式和特征多项式相等==》B相似于一个有理标准型矩阵A=P^{-1}BP.
令a=Pe_1,
有B^ka=BPe_k=Pe_{k+1},k=0,1,2,...,n-1.
从而得到命题成立
证明思路2:从最小多项式是次数最低的零化多项式来考虑.