已知|3a-1|+(2b+1)的平方=0,求2a平方+3b的平方/a-b的值快
问题描述:
已知|3a-1|+(2b+1)的平方=0,求2a平方+3b的平方/a-b的值
快
答
解:由题意得3a-1=0, a=1/3
2b+1=0 b=-1/2
2a^2+3b^2/(a-b)=2*(1/3)^2+3*(-1/2)^2/{1/3-(-1/2)}
=2/9+3/4*6/5
=2/9+9/10
=101/90
答
3a-1=0 2b+1=0 a=1/3 b=-1/2
2a平方+3b的平方/a-b=(2/9+3/4)/5/6=7/6
答
|3a-1|+(2b+1)的平方=0
|3a-1|=0
(2b+1)的平方=0
3a-1=0
a=1/3
2b+1=0
b=-1/2
2a平方+3b的平方/a-b
=[2(1/3)^2+3(-1/2)^2]/[1/3-(-1/2)]
=(2/9-3/4)/(1/3+1/2)
=(-19/36)/(5/6)
=-19/30
答
|3a-1|+(2b+1)^2=0
==> 3a-1=0,2b+1=0
==> a=1/3,b=-1/2
==>2a^2+3b^2/(a-b)
=2*1/9+3*1/4/(5/6)
=101/90
注:你写的题目实在是不清楚,只能按照我理解的写了