过抛物线x2=4y的焦点F作直线交抛物线于P1(x1、y1),P2(x2、y2)两点,若y1+y2=6,则|P1P2|的值为( ) A.5 B.6 C.8 D.10
问题描述:
过抛物线x2=4y的焦点F作直线交抛物线于P1(x1、y1),P2(x2、y2)两点,若y1+y2=6,则|P1P2|的值为( )
A. 5
B. 6
C. 8
D. 10
答
x2=4y的焦点为(0,1),设过焦点(0,1)的直线为y=kx+1则令kx+1=x24,即x2-4kx-4=0由韦达定理得x1+x2=4k,x1x2=-4y1=kx1+1,y2=kx2+1所以y1+y2=k(x1+x2)+2=4k2+2=6,所以k2=1所以|AB|=|x1-x2|k2+1=(k2+1)[(x1+x2...